Mediterranean Sea Significant Wave Height extreme from Reanalysis

'''DEFINITION'''


The CMEMS MEDSEA_OMI_seastate_extreme_var_swh_mean_and_anomaly OMI indicator is based on the computation of the annual 99th percentile of Significant Wave Height (SWH) from model data. Two different CMEMS products are used to compute the indicator: The Iberia-Biscay-Ireland Multi Year Product (MEDSEA_MULTIYEAR_WAV_006_012) and the Analysis product (MEDSEA_ANALYSIS_FORECAST_WAV_006_017).

Two parameters have been considered for this OMI:

* Map of the 99th mean percentile: It is obtained from the Multy Year Product, the annual 99th percentile is computed for each year of the product. The percentiles are temporally averaged in the whole period (1993-2019).

* Anomaly of the 99th percentile in 2020: The 99th percentile of the year 2020 is computed from the Analysis product. The anomaly is obtained by subtracting the mean percentile to the percentile in 2020.

This indicator is aimed at monitoring the extremes of annual significant wave height and evaluate the spatio-temporal variability. The use of percentiles instead of annual maxima, makes this extremes study less affected by individual data. This approach was first successfully applied to sea level variable (Pérez Gómez et al., 2016) and then extended to other essential variables, such as sea surface temperature and significant wave height (Pérez Gómez et al 2018 and Álvarez-Fanjul et al., 2019). Further details and in-depth scientific evaluation can be found in the CMEMS Ocean State report (Álvarez- Fanjul et al., 2019).


'''CONTEXT'''


The sea state and its related spatio-temporal variability affect maritime activities and the physical connectivity between offshore waters and coastal ecosystems, impacting therefore on the biodiversity of marine protected areas (González-Marco et al., 2008; Savina et al., 2003; Hewitt, 2003). Over the last decades, significant attention has been devoted to extreme wave height events since their destructive effects in both the shoreline environment and human infrastructures have prompted a wide range of adaptation strategies to deal with natural hazards in coastal areas (Hansom et al., 2014). Complementarily, there is also an emerging question about the role of anthropogenic global climate change on present and future extreme wave conditions.

The Mediterranean Sea is an almost enclosed basin where the complexity of its orographic characteristics deeply influences the atmospheric circulation at local scale, giving rise to strong regional wind regimes (Drobinski et al. 2018). Therefore, since waves are primarily driven by winds, high waves are present over most of the Mediterranean Sea and tend to reach the highest values where strong wind and long fetch (i.e. the horizontal distance over which wave-generating winds blow) are simultaneously present (Lionello et al. 2006). Specifically, as seen in figure and in agreement with other studies (e.g. Sartini et al. 2017), the highest values (5 – 6 m in figure, top) extend from the Gulf of Lion to the southwestern Sardinia through the Balearic Sea and are sustained southwards approaching the Algerian coast. They result from northerly winds dominant in the western Mediterranean Sea (Mistral or Tramontana), that become stronger due to orographic effects (Menendez et al. 2014), and act over a large area. In the Ionian Sea, the northerly Mistral wind is still the main cause of high waves (4-5 m in figure, top). In the Aegean and Levantine Seas, high waves (4-5 m in figure, top) are caused by the northerly Bora winds, prevalent in winter, and the northerly Etesian winds, prevalent in summer (Lionello et al. 2006; Chronis et al. 2011; Menendez et al. 2014). In general, northerly winds are responsible for most high waves in the Mediterranean (e.g. Chronis et al. 2011; Menendez et al. 2014). In agreement with figure (top), studies on the eastern Mediterranean and the Hellenic Seas have found that the typical wave height range in the Aegean Sea is similar to the one observed in the Ionian Sea despite the shorter fetches characterizing the former basin (Zacharioudaki et al. 2015). This is because of the numerous islands in the Aegean Sea which cause wind funneling and enhance the occurrence of extreme winds and thus of extreme waves (Kotroni et al. 2001). Special mention should be made of the high waves, sustained throughout the year, observed east and west of the island of Crete, i.e. around the exiting points of the northerly airflow in the Aegean Sea (Zacharioudaki et al. 2015). This airflow is characterized by consistently high magnitudes that are sustained during all seasons in contrast to other airflows in the Mediterranean Sea that exhibit a more pronounced seasonality (Chronis et al. 2011).


'''CMEMS KEY FINDINGS'''


In 2020 (bottom panel), higher-than-average values of the 99th percentile of Significant Wave Height are seen over most of the northern Mediterranean Sea, in the eastern Alboran Sea, and along stretches of the African coast (Tunisia, Libya and Egypt). In many cases they exceed the climatic standard deviation. Regions where the climatic standard deviation is exceeded twice are the European and African coast of the eastern Alboran Sea, a considerable part of the eastern Spanish coast, the Ligurian Sea and part of the east coast of France as well as areas of the southern Adriatic. These anomalies correspond to the maximum positive anomalies computed in the Mediterranean Sea for year 2020 with values that reach up to 1.1 m. Spatially constrained maxima are also found at other coastal stretches (e.g. Algeri, southeast Sardinia). Part of the positive anomalies found along the French and Spanish coast, including the coast of the Balearic Islands, can be associated with the wind storm “Gloria” (19/1 – 24/1) during which exceptional eastern winds originated in the Ligurian Sea and propagated westwards. The storm, which was of a particularly high intensity and long duration, caused record breaking wave heights in the region, and, in return, great damage to the coast (Amores et al., 2020; de Alfonso et al., 2021). Other storms that could have contributed to the positive anomalies observed in the western Mediterranean Sea include: storm Karine (25/2 – 5/4), which caused high waves from the eastern coast of Spain to the Balearic Islands (Copernicus, Climate Change Service, 2020); storm Bernardo (7/11 – 18/11) which also affected the Balearic islands and the Algerian coast and; storm Hervé (2/2 – 8/2) during which the highest wind gust was recorded at north Corsica (Wikiwand, 2021). In the eastern Mediterranean Sea, the medicane Ianos (14/9 – 21/9) may have contributed to the positive anomalies shown in the central Ionian Sea since this area coincides with the area of peak wave height values during the medicane (Copernicus, 2020a and Copernicus, 2020b). Otherwise, higher-than-average values in the figure are the result of severe, yet not unusual, wind events, which occurred during the year. Negative anomalies occur over most of the southern Mediterranean Sea, east of the Alboran Sea. The maximum negative anomalies reach about -1 m and are located in the southeastern Ionian Sea and west of the south part of mainland Greece as well as in coastal locations of the north and east Aegean They appear to be quite unusual since they are greater than two times the climatic standard deviation in the region. They could imply less severe southerly wind activity during 2020 (Drobinski et al., 2018).


Note: The key findings will be updated annually in November, in line with OMI evolutions.


'''DOI (product):'''

https://doi.org/10.48670/moi-00262

 

Simple

Title

Mediterranean Sea Significant Wave Height extreme from Reanalysis

Alternate title

MEDSEA_OMI_SEASTATE_extreme_var_swh_mean_and_anomaly

Date (Creation)
2020-06-18
Edition

3.4

Edition date
2023-03-30
Citation identifier
a78600a4-a280-47b5-8ddd-0dc8b5e9c9d9
Abstract

'''DEFINITION'''


The CMEMS MEDSEA_OMI_seastate_extreme_var_swh_mean_and_anomaly OMI indicator is based on the computation of the annual 99th percentile of Significant Wave Height (SWH) from model data. Two different CMEMS products are used to compute the indicator: The Iberia-Biscay-Ireland Multi Year Product (MEDSEA_MULTIYEAR_WAV_006_012) and the Analysis product (MEDSEA_ANALYSIS_FORECAST_WAV_006_017).

Two parameters have been considered for this OMI:

* Map of the 99th mean percentile: It is obtained from the Multy Year Product, the annual 99th percentile is computed for each year of the product. The percentiles are temporally averaged in the whole period (1993-2019).

* Anomaly of the 99th percentile in 2020: The 99th percentile of the year 2020 is computed from the Analysis product. The anomaly is obtained by subtracting the mean percentile to the percentile in 2020.

This indicator is aimed at monitoring the extremes of annual significant wave height and evaluate the spatio-temporal variability. The use of percentiles instead of annual maxima, makes this extremes study less affected by individual data. This approach was first successfully applied to sea level variable (Pérez Gómez et al., 2016) and then extended to other essential variables, such as sea surface temperature and significant wave height (Pérez Gómez et al 2018 and Álvarez-Fanjul et al., 2019). Further details and in-depth scientific evaluation can be found in the CMEMS Ocean State report (Álvarez- Fanjul et al., 2019).


'''CONTEXT'''


The sea state and its related spatio-temporal variability affect maritime activities and the physical connectivity between offshore waters and coastal ecosystems, impacting therefore on the biodiversity of marine protected areas (González-Marco et al., 2008; Savina et al., 2003; Hewitt, 2003). Over the last decades, significant attention has been devoted to extreme wave height events since their destructive effects in both the shoreline environment and human infrastructures have prompted a wide range of adaptation strategies to deal with natural hazards in coastal areas (Hansom et al., 2014). Complementarily, there is also an emerging question about the role of anthropogenic global climate change on present and future extreme wave conditions.

The Mediterranean Sea is an almost enclosed basin where the complexity of its orographic characteristics deeply influences the atmospheric circulation at local scale, giving rise to strong regional wind regimes (Drobinski et al. 2018). Therefore, since waves are primarily driven by winds, high waves are present over most of the Mediterranean Sea and tend to reach the highest values where strong wind and long fetch (i.e. the horizontal distance over which wave-generating winds blow) are simultaneously present (Lionello et al. 2006). Specifically, as seen in figure and in agreement with other studies (e.g. Sartini et al. 2017), the highest values (5 – 6 m in figure, top) extend from the Gulf of Lion to the southwestern Sardinia through the Balearic Sea and are sustained southwards approaching the Algerian coast. They result from northerly winds dominant in the western Mediterranean Sea (Mistral or Tramontana), that become stronger due to orographic effects (Menendez et al. 2014), and act over a large area. In the Ionian Sea, the northerly Mistral wind is still the main cause of high waves (4-5 m in figure, top). In the Aegean and Levantine Seas, high waves (4-5 m in figure, top) are caused by the northerly Bora winds, prevalent in winter, and the northerly Etesian winds, prevalent in summer (Lionello et al. 2006; Chronis et al. 2011; Menendez et al. 2014). In general, northerly winds are responsible for most high waves in the Mediterranean (e.g. Chronis et al. 2011; Menendez et al. 2014). In agreement with figure (top), studies on the eastern Mediterranean and the Hellenic Seas have found that the typical wave height range in the Aegean Sea is similar to the one observed in the Ionian Sea despite the shorter fetches characterizing the former basin (Zacharioudaki et al. 2015). This is because of the numerous islands in the Aegean Sea which cause wind funneling and enhance the occurrence of extreme winds and thus of extreme waves (Kotroni et al. 2001). Special mention should be made of the high waves, sustained throughout the year, observed east and west of the island of Crete, i.e. around the exiting points of the northerly airflow in the Aegean Sea (Zacharioudaki et al. 2015). This airflow is characterized by consistently high magnitudes that are sustained during all seasons in contrast to other airflows in the Mediterranean Sea that exhibit a more pronounced seasonality (Chronis et al. 2011).


'''CMEMS KEY FINDINGS'''


In 2020 (bottom panel), higher-than-average values of the 99th percentile of Significant Wave Height are seen over most of the northern Mediterranean Sea, in the eastern Alboran Sea, and along stretches of the African coast (Tunisia, Libya and Egypt). In many cases they exceed the climatic standard deviation. Regions where the climatic standard deviation is exceeded twice are the European and African coast of the eastern Alboran Sea, a considerable part of the eastern Spanish coast, the Ligurian Sea and part of the east coast of France as well as areas of the southern Adriatic. These anomalies correspond to the maximum positive anomalies computed in the Mediterranean Sea for year 2020 with values that reach up to 1.1 m. Spatially constrained maxima are also found at other coastal stretches (e.g. Algeri, southeast Sardinia). Part of the positive anomalies found along the French and Spanish coast, including the coast of the Balearic Islands, can be associated with the wind storm “Gloria” (19/1 – 24/1) during which exceptional eastern winds originated in the Ligurian Sea and propagated westwards. The storm, which was of a particularly high intensity and long duration, caused record breaking wave heights in the region, and, in return, great damage to the coast (Amores et al., 2020; de Alfonso et al., 2021). Other storms that could have contributed to the positive anomalies observed in the western Mediterranean Sea include: storm Karine (25/2 – 5/4), which caused high waves from the eastern coast of Spain to the Balearic Islands (Copernicus, Climate Change Service, 2020); storm Bernardo (7/11 – 18/11) which also affected the Balearic islands and the Algerian coast and; storm Hervé (2/2 – 8/2) during which the highest wind gust was recorded at north Corsica (Wikiwand, 2021). In the eastern Mediterranean Sea, the medicane Ianos (14/9 – 21/9) may have contributed to the positive anomalies shown in the central Ionian Sea since this area coincides with the area of peak wave height values during the medicane (Copernicus, 2020a and Copernicus, 2020b). Otherwise, higher-than-average values in the figure are the result of severe, yet not unusual, wind events, which occurred during the year. Negative anomalies occur over most of the southern Mediterranean Sea, east of the Alboran Sea. The maximum negative anomalies reach about -1 m and are located in the southeastern Ionian Sea and west of the south part of mainland Greece as well as in coastal locations of the north and east Aegean They appear to be quite unusual since they are greater than two times the climatic standard deviation in the region. They could imply less severe southerly wind activity during 2020 (Drobinski et al., 2018).


Note: The key findings will be updated annually in November, in line with OMI evolutions.


'''DOI (product):'''

https://doi.org/10.48670/moi-00262

Credit

E.U. Copernicus Marine Service Information

Point of contact
Organisation name Individual name Electronic mail address Role

IBI-PUERTOS-MADRID-ES

Production Unit
Maintenance and update frequency
Annually
Other

P0M0D0H/P0M0D0H

Maintenance note

N/A

GEMET - INSPIRE themes, version 1.0

  • Oceanographic geographical features
Discipline
  • numerical-model
Temporal scale
  • multi-year
Area of benefit
  • weather-climate-and-seasonal-forecasting
  • marine-safety
  • coastal-marine-environment
  • marine-resources
Reference Geographical Areas
  • mediterranean-sea
Processing level
  • N/A
Model assimilation
  • Not Applicable
Use limitation

See Copernicus Marine Environment Monitoring Service Data commitments and licence at: http://marine.copernicus.eu/web/27-service-commitments-and-licence.php

Access constraints
Other restrictions
Use constraints
License
Other legal constraints

No limitations on public access

Title

Álvarez Fanjul E, Pascual Collar A, Pérez Gómez B, De Alfonso M, García Sotillo M, Staneva J, Clementi E, Grandi A, Zacharioudaki A, Korres G, Ravdas M, Renshaw R, Tinker J, Raudsepp U, Lagemaa P, Maljutenko I, Geyer G, Müller M, Çağlar Yumruktepe V. Sea level, sea surface temperature and SWH extreme percentiles: combined analysis from model results and in situ observations, Section 2.7, p:31. In: Schuckmann K, Le Traon P-Y, Smith N, Pascual A, Djavidnia S, Gattuso J-P, Grégoire M, Nolan G, et al. 2019. Copernicus Marine Service Ocean State Report, Issue 3, Journal of Operational Oceanography, 12:sup1, S1-S123, DOI: 10.1080/1755876X.2019.1633075

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Amores, A., Marcos, M., Carrió, Di.S., Gomez-Pujol, L., 2020. Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean. Nat. Hazards Earth Syst. Sci. 20, 1955–1968. doi:10.5194/nhess-20-1955-2020

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Chronis T, Papadopoulos V, Nikolopoulos EI. 2011. QuickSCAT observations of extreme wind events over the Mediterranean and Black Seas during 2000-2008. Int J Climatol. 31: 2068–2077.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Copernicus: Climate Change Service. 2020a (Last accessed July 2021): URL: https://surfobs.climate.copernicus.eu/stateoftheclimate/march2020.php

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Copernicus, Copernicus Marine Service. 2020b (Last accessed July 2021): URL: https://marine.copernicus.eu/news/following-cyclone-ianos-across-mediterranean-sea

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

de Alfonso, M., Lin-Ye, J., García-Valdecasas, J.M., Pérez-Rubio, S., Luna, M.Y., Santos-Muñoz, D., Ruiz, M.I., Pérez-Gómez, B., Álvarez-Fanjul, E., 2021. Storm Gloria: Sea State Evolution Based on in situ Measurements and Modeled Data and Its Impact on Extreme Values. Front. Mar. Sci. 8, 1–17. doi:10.3389/fmars.2021.646873

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Drobinski P, Alpert P, Cavicchia L, Flaoumas E, Hochman A, Kotroni V. 2018. Strong winds Observed trends, future projections, Sub-chapter 1.3.2, p. 115-122. In: Moatti JP, Thiébault S (dir.). The Mediterranean region under climate change: A scientific update. Marseille: IRD Éditions.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

González-Marco D, Sierra J P, Ybarra O F, Sánchez-Arcilla A. 2008. Implications of long waves in harbor management: The Gijón port case study. Ocean & Coastal Management, 51, 180-201. doi:10.1016/j.ocecoaman.2007.04.001.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Hanson et al., 2014. Extreme Waves: Causes, Characteristics and Impact on Coastal Environments and Society January 2014 In book: Coastal and Marine Hazards, Risks, and Disasters Edition: Hazards and Disasters Series, Elsevier Major Reference Works Chapter: Chapter 11: Extreme Waves: Causes, Characteristics and Impact on Coastal Environments and Society. Publisher: Elsevier Editors: Ellis, J and Sherman, D. J.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Hewit J E, Cummings V J, Elis J I, Funnell G, Norkko A, Talley T S, Thrush S.F. 2003. The role of waves in the colonisation of terrestrial sediments deposited in the marine environment. Journal of Experimental marine Biology and Ecology, 290, 19-47, doi:10.1016/S0022-0981(03)00051-0.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Kotroni V, Lagouvardos K, Lalas D. 2001. The effect of the island of Crete on the Etesian winds over the Aegean Sea. Q J R Meteorol Soc. 127: 1917–1937. doi:10.1002/qj.49712757604

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Lionello P, Rizzoli PM, Boscolo R. 2006. Mediterranean climate variability, developments in earth and environmental sciences. Elsevier.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Menendez M, García-Díez M, Fita L, Fernández J, Méndez FJ, Gutiérrez JM. 2014. High-resolution sea wind hindcasts over the Mediterranean area. Clim Dyn. 42:1857–1872.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Pérez-Gómez B, Álvarez-Fanjul E, She J, Pérez-González I, Manzano F. 2016. Extreme sea level events, Section 4.4, p:300. In: Von Schuckmann K, Le Traon PY, Alvarez-Fanjul E, Axell L, Balmaseda M, Breivik LA, Brewin RJW, Bricaud C, Drevillon M, Drillet Y, Dubois C , Embury O, Etienne H, García-Sotillo M, Garric G, Gasparin F, Gutknecht E, Guinehut S, Hernandez F, Juza M, Karlson B, Korres G, Legeais JF, Levier B, Lien VS, Morrow R, Notarstefano G, Parent L, Pascual A, Pérez-Gómez B, Perruche C, Pinardi N, Pisano A, Poulain PM , Pujol IM, Raj RP, Raudsepp U, Roquet H, Samuelsen A, Sathyendranath S, She J, Simoncelli S, Solidoro C, Tinker J, Tintoré J, Viktorsson L, Ablain M, Almroth-Rosell E, Bonaduce A, Clementi E, Cossarini G, Dagneaux Q, Desportes C, Dye S, Fratianni C, Good S, Greiner E, Gourrion J, Hamon M, Holt J, Hyder P, Kennedy J, Manzano-Muñoz F, Melet A, Meyssignac B, Mulet S, Nardelli BB, O’Dea E, Olason E, Paulmier A, Pérez-González I, Reid R, Racault MF, Raitsos DE, Ramos A, Sykes P, Szekely T, Verbrugge N. 2016. The Copernicus Marine Environment Monitoring Service Ocean State Report, Journal of Operational Oceanography. 9 (sup2): 235-320. http://dx.doi.org/10.1080/1755876X.2016.1273446

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Pérez Gómez B., De Alfonso M., Zacharioudaki A., Pérez González I., Álvarez Fanjul E., Müller M., Marcos M., Manzano F., Korres G., Ravdas M., Tamm S. 2018. Sea level, SST and waves: extremes variability. In: Copernicus Marine Service Ocean State Report, Issue 2, Journal of Operational Oceanography, 11:sup1, Chap. 3.1, s79–s88, DOI: https://doi.org/10.1080/1755876X.2018.1489208

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Sartini L, Besio G, Cassola F. 2017. Spatio-temporal modelling of extreme wave heights in the Mediterranean Sea. Ocean Modelling, 117, 52-69.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Aggregate Datasetindentifier
f77abd99-6905-4723-b8c5-1f5faf309366
Association Type
Cross reference
Initiative Type
Document
Aggregate Datasetindentifier
001acb8a-2e6e-467f-a5fe-fb23bf387527
Association Type
Cross reference
Initiative Type
Document
Aggregate Datasetindentifier
09350d76-a79c-4146-8f43-0c54a031f322
Association Type
Cross reference
Initiative Type
Document
Title

Savina H, Lefevre J-M, Josse P, Dandin P. 2003. Definition of warning criteria. Proceedings of MAXWAVE Final Meeting, October 8-11, Geneva, Switzerland.

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Wikiwand: 2019 - 20 European windstorm season. URL: https://www.wikiwand.com/en/2019%E2%80%9320_European_windstorm_season

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Title

Zacharioudaki A, Korres G, Perivoliotis L, 2015. Wave climate of the Hellenic Seas obtained from a wave hindcast for the period 1960–2001. Ocean Dynamics. 65: 795–816. https://doi.org/10.1007/s10236-015-0840-z

Date (Creation)
2019-05-08
Association Type
Cross reference
Initiative Type
Reference
Language

eng

Topic category
  • Oceans
Description

bounding box

N
S
E
W


Begin date
1993-01-01
End date
2020-12-31

Vertical extent

Minimum value
0
Maximum value
0

Vertical CRS

No information provided.
Supplemental Information

display priority: 53800

Reference system identifier
EPSG / WGS 84 (EPSG:4326)
Number of dimensions
2
Dimension name
Row
Resolution
0.042  degree
Dimension name
Column
Resolution
0.042  degree
Cell geometry
Area
Transformation parameter availability
Distribution format
Name Version

NetCDF-4

Distributor

OnLine resource
Protocol Linkage Name

WWW:STAC

https://stac.marine.copernicus.eu/metadata/MEDSEA_OMI_SEASTATE_extreme_var_swh_mean_and_anomaly/medsea_omi_seastate_extreme_var_swh_mean_and_anomaly_202112/dataset.stac.json

medsea_omi_seastate_extreme_var_swh_mean_and_anomaly

Hierarchy level
Series

Conformance result

Title

COMMISSION REGULATION (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services

Date (Publication)
2010-12-08
Explanation

See the referenced specification

Statement

The myOcean products depends on other products for production or validation. The detailed list of dependencies is given in ISO19115's aggregationInfo (ISO19139 Xpath = "gmd:MD_Metadata/gmd:identificationInfo/gmd:aggregationInfo[./gmd:MD_AggregateInformation/gmd:initiativeType/gmd:DS_InitiativeTypeCode/@codeListValue='upstream-validation' or 'upstream-production']")

Attribute description
observation
Content type
Physical measurement
Descriptor

vertical level number: 1

Descriptor

temporal resolution: annual mean

Included with dataset
Feature types
Grid

Metadata

File identifier
a53e681e-418b-4a4c-a52a-24df1271882c
Metadata language
English
Character set
UTF8
Hierarchy level
Series
Hierarchy level name

Copernicus Marine Service product specification

Date stamp
2025-04-14T07:36:05.805771Z
Metadata standard name

ISO 19139, MyOcean profile

Metadata standard version

0.2

Metadata author
Organisation name Individual name Electronic mail address Role

CMEMS

servicedesk.cmems@mercator-ocean.eu

Local service desk
 
 

accessData

 

Overviews

Overview

Tags

Area of benefit
coastal-marine-environment marine-resources marine-safety weather-climate-and-seasonal-forecasting
Discipline
numerical-model
GEMET - INSPIRE themes, version 1.0
Oceanographic geographical features
Model assimilation
Not Applicable
Processing level
N/A
Reference Geographical Areas
mediterranean-sea
Temporal scale
multi-year